Effects of Free Fatty Acids on Insulin and Glucagon Secretion

نویسندگان

  • HJALTI KRISTINSSON
  • Birgitte Holst
چکیده

Kristinsson, H. 2017. Effects of Free Fatty Acids on Insulin and Glucagon Secretion. – with special emphasis on the role of Free fatty acid receptor 1. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1320. 54 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9867-2. Prevalence of type 2 diabetes mellitus (T2DM) is still rising and even so in the juvenile population. Obesity is highly associated with increased risk for developing T2DM. The development has been related to elevated fasting concentrations of the pancreatic islet hormones insulin and glucagon as well as to an increase in plasma lipids that occurs during obesity. Specifically, research has indicated that chronic exposure to high levels of saturated free fatty acids cause dysfunction in islet alphaand beta-cells. Fatty acids can affect islet cells by various mechanisms one of which is the G-protein coupled receptor FFAR1/GPR40. The role of the receptor in the effects of fatty acids on pancreatic islet-cell function is not clear. The aim of this thesis was to clarify the role of FFAR1 in how fatty acids, and more specifically the long-chain saturated fatty acid palmitate, affect insulin and glucagon secretion. In children and adolescents with obesity elevated fasting levels of insulin and glucagon were positively correlated with lipid parameters. Specifically, plasma triglycerides and free fatty acids were positively correlated with insulin and glucagon at fasting as well as with visceral adipose tissue volume. Elevated glucagon levels at fasting were associated with worsening of glucose tolerance in the same population. In in vitro studies of isolated human islets palmitate stimulated basal insulin and glucagon secretion as well as mitochondrial respiration at fasting glucose levels. The effect was mediated by FFAR1 and fatty acid beta-oxidation. At higher glucose concentrations the receptor was involved in the potentiation of insulin secretion from isolated human islets and insulin-secreting MIN6 cells. Furthermore, we found that the effects of palmitate on hormone secretion were associated with enhanced mitochondrial respiration mediated by FFAR1 Gαq signaling and PKC activity as well as increased intracellular metabolism induced by the fatty acid. When islets were exposed to palmitate for long time periods and in the presence of FFAR1 antagonist, normalized insulin and glucagon secretion during culture and insulin response to glucose after culture were observed. In MIN6 cells chronic palmitate treatment increased mitochondrial uncoupling irrespective of FFAR1 involvement. However, FFAR1 antagonism during palmitate exposure resulted in elevated respiration and reduced apoptosis. In conclusion, children and adolescents with obesity have elevated fasting concentrations of insulin and glucagon that correlate with free fatty acids and fatty acid sources. High glucagon levels are linked to worsening of glucose tolerance in these subjects. In vitro the combination or synergy of FFAR1 activation and intracellular metabolism caused by palmitate is decisive for both the short-term enhancement effects and the negative chronic effects on insulin and glucagon secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats

Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...

متن کامل

Effect of changes in plasma levels of free fatty acids on plasma glucagon, insulin, and growth hormone in man.

A regulatory role of acute changes in plasma concentration of free fatty acids on glucagon secretion has been suggested. We have studied the effect of such changes on plasma levels of glucagon, insulin, and growth hormone in man. Basal plasma levels of immunoreactive glucagon (IRG) were only slightly raised in 11 healthy subjects when the mean concentration of free fatty acids (FFA) was depress...

متن کامل

Comparison of the suppressive effects of elevated plasma glucose and free fatty acid levels on glucagon secretion in normal and insulin-dependent diabetic subjects. Evidence for selective alpha-cell insensitivity to glucose in diabetes mellitus.

To examine whether abnormal pancreatic alpha-cell function found in human diabetes mellitus may represent a selective insensitivity to glucose, plasma glucagon responses to hyperglycemia and elevation of plasma free fatty acid levels (both known suppressors of glucagon secretion) were compared in juvenile-onset, insulin-requiring diabetic subjects, and in normal nondiabetic subjects. In the lat...

متن کامل

The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets.

G protein-coupled receptor 40 (GPR40)/free fatty acid 1 (FFA1) is a G protein-coupled receptor involved in free fatty acid-induced insulin secretion. To analyze the effect of our novel GPR40/FFA1-selective agonist, [(3S)-6-({2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic acid hemi-hydrate (TAK-875), on insulin and glucagon secretion, we ...

متن کامل

Insulin's direct hepatic effect explains the inhibition of glucose production caused by insulin secretion.

Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017